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Abstract

Echinocandins are the newest antifungal agents approved for use in treating Candida infections in 

the US. They act by interfering with 1,3-β-D-glucan synthase and therefore disrupt cell wall 

production and lead to Candida cell death. There is no intrinsic resistance to echinocandins among 

Candida species, and isolates from historic collections archived before the release of the 

echinocandins show no resistance. Resistance to the echinocandins remains low among most 

Candida species and ranges overall from 0–1%. Among isolates of Candida glabrata, the 

proportion of resistant isolates is higher and has been reported to be as high as 13.5% in at least 

one hospital. Antifungal resistance is due to specific amino acid mutations in the Fksp subunit(s) 

of the 1,3-β-D-glucan synthase protein which are localized to one of two hotspots. These 

mutations are being recognized in isolates from patients who have failed echinocandin therapy, 

and often lead to a poor outcome. While the future looks bright for the echinocandins against most 

Candida species, C. glabrata remains a species of concern and resistance rates of C. glabrata to the 

echinocandins should be monitored closely.
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Introduction

In terms of therapy to treat infection, the antifungal drugs are the relative ‘new kid on the 

block’. The polyenes were introduced in the 1950s and were the lone weapon in the arsenal 

until the 1990s when the first azole antifungal was introduced into clinical practice. The first 

echinocandin, Echinocandin B, was isolated in 1974 and was soon discovered to have 

antifungal properties [1]. However, the hemolytic properties of natural echinocandins 

prevented them from being viable candidates for human use, and it wasn’t until the approval 

of the semisynthetic echinocandin, caspofungin, by the US Food and Drug Administration in 

2001 that echinocandins were introduced into clinical practice.

Echinocandins, caspofungin, micafungin, and anidulafungin, act through noncompetitive 

inhibition of 1,3-β-D-glucan synthase, the enzyme responsible for the production of 1,3-β-

D-glucan, a component of the cell wall in many species of fungus [2, 3]. The ability of an 

antifungal to target the fungal cell wall is unique to echinocandins. Unlike amphotericin B, 
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which interacts with the sterols in both human and fungal cell membranes, use of 

echinocandins poses a much lower risk of side effects caused by incidental action of drug 

against the host’s own cells. This capacity is particularly desirable because of the presence 

of cell walls in fungal but not in animal cells. Additionally, their distinct mechanism of 

action allows echinocandins to be used against isolates that have already developed 

resistance to cell membrane active antifungals. In Candida species, this disruption of the cell 

wall is fungicidal, leading to cell lysis via osmotic instability [3].

Echinocandins are only effective against fungal species with cell walls that contain abundant 

1,3-β-D-glucan, which precludes their use against Fusarium, the Mucormycetes and 

Trichosporon. Although Cryptococcus species have 1,3-β-D-glucan, they remain resistant to 

the echinocandins [4]. In the United States and the European Union, this drug class is 

primarily approved for use against candidemia, esophageal candidiasis, and various forms of 

invasive candidiasis. Additionally, micafungin can be used as prophylaxis against Candida in 

hematopoietic stem cell transplant patients, and caspofungin is approved as treatment against 

invasive aspergillosis that is not responsive to other antifungals and for empiric treatment in 

febrile neutropenic patients.

Echinocandin Resistance

The primary mechanism of echinocandin resistance that has emerged since the introduction 

of the drug class into clinical practice is mutations in FKS1, and additionally in C. glabrata, 
FKS2, genes that encode subunits of 1,3-β-D-glucan synthase. These mutations, first 

described in Candida isolates in 2005 [5], occur in one of two areas, hot spot 1, located at 

amino acids 641-649 in Candida albicans [6], and hot spot 2, located at amino acids 

1345-1365 [7]. Hot spot mutations have been identified in C. albicans, C. glabrata, C. 
parapsilosis, C. tropicalis, C. krusei, C. dubliniensis, and, C. guilliermondii [7, 8]. In two 

studies of C. glabrata, the presence of FKS mutations was significantly associated with 

treatment failure [9, 10]. The nature of the interaction between echinocandins and FKS1 has 

not been elucidated, so the mechanisms by which these substitutions lead to reduced 

susceptibility are unclear. It has been demonstrated, however, that substitutions at different 

amino acids, even within the same hotspots, can have different impacts on resistance profiles 

in terms of which echinocandins are effected, and the extent of the decrease in susceptibility 

[11, 12]. Furthermore, more than one of these mutations can occur in the same isolate, 

producing a less susceptible phenotype than would result from either mutation singularly 

[13, 12].

Beyond FKS mutations, other mechanisms have been suggested to cause resistance to 

echinocandins. One of these is the increase of cell wall chitin content to compensate for the 

1,3-β-D-glucan depletion caused by echinocandin treatment. C. albicans has been 

demonstrated to have higher chitin content following in vitro treatment with echinocandins, 

as has C. tropicalis, some isolates of C. parapsilosis, C. guilliermondii, and, more rarely, C. 
krusei [14]. Increased chitin content was also found in a lab strain of C. glabrata treated with 

caspofungin [15], but, in a separate study, it was not found in several clinical C. glabrata 
strains grown with caspofungin at each isolate’s IC50 [14]. Multiple studies have correlated 

the induction of increased chitin content with decreased susceptibility to echinocandins in 
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vitro and in vivo [14, 16]. However, these cells with induced high chitin content have also 

been shown to be less virulent, and appear to be selected against in the absence of 

echinocandin [16], raising doubts as to their clinical viability. Nonetheless, there has been at 

least one report of a patient infected with a caspofungin-resistant C. albicans isolate with 

chitin levels four times greater than those of a sensitive reference strain, in addition to an 

FKS1 hot spot 1 mutation [17]. While the extent to which the isolate’s chitin levels 

contributed to its resistance is unclear, the case does demonstrate that it is possible for a 

strain with elevated chitin levels to cause a successful infection.

Interestingly, it has been suggested that increased chitin content may in fact precipitate FKS 
mutations. In a mouse model of infection, several isolates of a C. albicans strain that had 

been induced to possess increased chitin through growth with Ca2+ and calcofluor white 

were found to possess FKS1 hot spot 1 mutations, even if the mice they infected had not 

been treated with echinocandins. In contrast, none of the normal-chitin parental strains 

injected into mice contained any hot spot mutations [16]. It is possible that induction of the 

pathway that is responsible for increasing chitin content is also involved in increasing the 

likelihood of mutations in FKS1. At present, it is unclear what cellular changes allow some 

Candida species or strains within species to have a higher chitin content in the presence of 

echinocandins than others.

Finally, the intracellular buildup of long-chain bases dihydrosphingosine and 

phytosphingosine, both intermediates in the sphingolipid biosynthesis pathway, has been 

proposed as the mechanism of a caspofungin reduced susceptibility, micafungin increased 

susceptibility (“CRS-MIS”) profile observed in C. glabrata in both laboratory strains with 

induced caspofungin resistance and clinical strains [18, 19]. This phenotype was found to be 

induced by mutations to one of several enzymes involved in sphingolipid biosynthesis. The 

resulting excess of long-chain bases in the cell membrane has been hypothesized to alter the 

binding of echinocandins to Fks1p and Fks2p, weakening the interaction with caspofungin, 

while strengthening that with micafungin, based on the chemistry of the two echinocandins’ 

tails [19]. While this “CRS-MIS” profile and its associated mutations have been observed in 

clinical isolates, there has been no research into whether the MIC effects are maintained in 
vivo. If they are, identifying isolates in which this phenomenon is active could inform 

patient treatment, preventing treatment escalation to amphotericin B in caspofungin-resistant 

isolates that would respond to micafungin.

Several species of Candida are of particular concern because of high in vitro MIC values to 

the echinocandins. C. parapsilosis has an intrinsic variation in its FKS sequence that 

coincides with a hot spot mutation [20], and the mechanisms of C. lusitaniae and C. 
guilliermondii may be similar [21, 22]. These appear to render them less susceptible to 

echinocandins in vitro, and the extent to which this affects the efficacy of clinical 

echinocandin treatment is not yet fully understood. While C. glabrata does not possess 

intrinsic reduced susceptibility to echinocandins, it is also a species of concern for the 

development of drug resistance. Data suggest that rates of echinocandin resistance are 

greater in C. glabrata than in most other intrinsically susceptible species of Candida [23, 12, 

24–26], and it has been hypothesized that C. glabrata’s haploidy and genomic plasticity 

allows it to develop and strongly express resistance mechanisms more quickly than other 
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Candida species [24, 12, 27]. This is particularly worrisome given that C. glabrata has 

reduced sensitivity to azoles, and now has echinocandins as its recommended first line 

treatment.

Epidemiology

Changes in the rates of echinocandin resistance are difficult both to ascertain and to 

interpret. One major problem in tracking the levels of echinocandin resistance and the 

temporal and geographic changes is that the available published data have been sorted 

according to several different sets of clinical breakpoints, including the current, species-

specific Clinical and Laboratory Standards Institute (CLSI) breakpoints [28], the 2008 CLSI 

breakpoints [29], and the European Committee on Antimicrobial Susceptibility Testing 

(EUCAST) breakpoints [30], none of which are directly comparable to one another. While 

CLSI and EUCAST antifungal susceptibility testing methods have generally shown high 

categorical agreement between wild type and non-wild type isolates as judged by 

epidemiological cutoff values for anidulafungin and micafungin when applied to the major 

Candida species [31], it is unclear whether the same is true of susceptibility according to 

their respective breakpoints. Additionally, the fact that many publications describing rates of 

echinocandin resistance in the early to mid-2000s defined resistance according to the 

original, non-species-specific CLSI breakpoints has rendered much of this early data 

difficult to compare to current numbers, making it harder to determine how resistance to 

echinocandins has emerged since their introduction into practice. It should also be noted that 

while there are always questions as to the consistency of antifungal susceptibility results 

between testing sites, caspofungin MICs are notoriously variable, and there is some doubt as 

to whether they can be relied upon at all [32].

Beyond the question of the consistency of antifungal susceptibility testing results and 

definitions from laboratory to laboratory and study to study, it is currently unclear how in 
vitro echinocandin resistance should be understood as an indicator of clinical resistance and 

treatment failure. Alexander and coworkers [25] found that every C. glabrata isolate with an 

echinocandin-resistant MIC that caused a treatment failure also contained an FKS mutation. 

They concluded that the question lies in whether in vitro resistance “serve[s] as a sensitive 

but nonspecific phenotypic screen for the presence of clinically significant FKS mutations,” 

or if elevated echinocandin MICs are independently predictive of an FKS mutation. The 

former theory was supported in one study where the only independent risk factor for 

echinocandin treatment failure against invasive C. glabrata was the presence of an FKS 
mutation [33]. However, another study of C. glabrata candidemia found that the caspofungin 

MIC was effective in predicting which FKS mutants would cause treatment failure, 

reaffirming the usefulness of in vitro susceptibility data as more than a proxy [34]. The same 

study identified prior echinocandin exposure, but neither MIC nor FKS mutations, as an 

independent risk factor for treatment failure, suggesting that there may indeed be other 

clinically relevant mechanisms of resistance that such exposure could be selecting for 

beyond just FKS mutations.

Rates of echinocandin resistance as defined by MIC value in Candida vary by species, 

region, institution, and patient population. Among C. albicans, resistance tends to be very 
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low. SENTRY, a surveillance study including invasive Candida from North America, 

Europe, Latin America and Asia-Pacific in 2010 and 2011, found resistant and intermediate 

rates in this species to be 0.0% and 0.4% to anidulafungin, 0.2% and 0.4% to caspofungin, 

and 0.1% and 0.3% to micafungin, respectively [26]. In the United States, a study of 

candidemia from hospitals in Atlanta and Baltimore found 0.3% resistance to anidulafungin, 

0.5% resistance to caspofungin, and 0.3% resistance to micafungin [35]. C. parapsilosis also 

shows generally low levels of echinocandin resistance, with SENTRY capturing resistance 

rates of 0.5%, 0.0%, and 0.0%, and Atlanta and Baltimore-based surveillance finding 0.0%, 

0.3%, and 0.0% to anidulafungin, caspofungin, and micafungin, respectively.

While still fairly low, the rates of resistance to C. glabrata are noticeably higher than those of 

the other Candida species. SENTRY surveillance in 2010 & 2011 found that rates of 

resistant and intermediate isolates were 1.8% and 4.6%, 1.6% and 2.5%, and 1.2% and 0.9% 

for anidulafungin, caspofungin, and micafungin, respectively. These rates reveal 

considerable geographic variation, with no resistance in Latin America, equivalent resistance 

rates in Europe and North America (anidulafungin, 1.7% and 1.6%, caspofungin, 1.7% and 

1.6%, and micafungin, 1.1% and 1.3% in Europe and North America, respectively), and 

higher rates in Asia-Pacific (anidulafungin: 3.8%, caspofungin: 1.9%, and micafungin 1.9%)

[26]. The 2008–2011 candidemia surveillance in Atlanta and Baltimore captured 2.7%, 2.4% 

and 2.7% resistance to anidulafungin, caspofungin, and micafungin, respectively, with rates 

slightly higher in Atlanta than Baltimore (2.5–3.1% versus 2.3–2.5% resistance to the three 

drugs). It should be noted that C. glabrata resistance rates in some individual institutions 

have been reported to be much higher, as with one eastern US hospital, which reported 

12.5% resistance to anidulafungin and micafungin, and 13.5% resistance to caspofungin in 

2009 and 2010 [25].

There is considerable evidence that exposure to echinocandins predisposes patients to 

developing echinocandin-resistant Candida. This has been identified as an independent 

predictor of the presence of an FKS mutation and echinocandin treatment failure in C. 
glabrata candidemia cases [34, 25], and exposure to caspofungin within 30 days has been 

found to be an independent risk factor for blood stream infection with a Candida isolate with 

reduced caspofungin susceptibility in multiple studies [36, 37]. Epidemiological studies of 

drug resistance tend to include just the incident isolate of Candida infection. Many studies 

will not capture the isolates that develop echinocandin resistance over the course of 

treatment [35, 38], isolates which have been described in multiple publications [39, 40]. It is 

therefore possible that current estimates of echinocandin resistance rates do not entirely 

encompass the population of patients affected by these reduced-susceptibility isolates.

There is evidence that rates of echinocandin resistance are rising, though the extent to which 

this is true seems to vary greatly by location. Several surveillance studies have compared 

past and recent rates of resistance, frequently revealing an upward drift over many years. 

This may be seen very slightly with C. albicans, as in one global surveillance study that 

found rates of non-susceptibility (resistant + intermediate) increase from <0.1%, 0% and 0% 

in 2003–2007 to 0.4%, 0.6% and 0.4% in 2010–2011 for anidulafungin, caspofungin, and 

micafungin, respectively [26]. However, it is found far more dramatically in C. glabrata, the 

non-susceptibility rates of which climbed from 2.8%, 1.5% and 0.9% to 6.4%, 4.1% and 
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2.1% for the same drugs over the same time period [26]. A particularly extreme example of 

this is the study from the eastern US hospital cited above, which monitored C. glabrata 
echinocandin resistance from 2001 to 2010. During the first six years of the study period, 

resistance to each echinocandin ranged from ~1.7% to ~5.0% during each two year period, 

after which it veered sharply upwards to ~9.5%-10.5 for each drug in 2007–2008, and them 

~12.5%–13.5% in 2009–2010 [25]. Of course, there are also institutions and areas that do 

not seem to be experiencing the emergence of echinocandin resistance, as with a Spanish 

institution which found no echinocandin resistance in C. glabrata or C. parapsilosis from 

2007 through 2013 (according to EUCAST antifungal testing methods and breakpoints) 

[41], or the Latin American laboratories contributing isolates to the global SENTRY 

surveillance program, which identified no C. albicans, C. glabrata, C. parapsilosis, C. 
tropicalis, or C. krusei isolates resistant to anidulafungin or micafungin in 2008 and 2009 

(isolates were not tested for susceptibility to caspofungin in this time range) [24], and no 

isolates of these species resistant to any of the echinocandins, with the exception of a single 

anidulafungin-resistant C. parapsilosis isolate among the 104 collected [26].

The other factors contributing to the overall rise of echinocandin resistance among Candida 
isolates are the downward trend in relative C. albicans prevalence, and corresponding 

upward trend in C. glabrata prevalence. This rise in C. glabrata has been noted by many 

studies [35, 42, 43, 38, 44], and has been attributed to the widespread use of fluconazole, to 

which C. glabrata has intrinsically reduced susceptibility. Given that C. glabrata has shown 

itself more likely to develop echinocandin resistance, its increasing prevalence in the patient 

population increases the likelihood of a person with candidemia having a strain with reduced 

susceptibility.

There are several patient characteristics that have been found to predispose infecting 

Candida isolates to reduced echinocandin susceptibility. Not surprisingly, limited global 

surveillance has found nosocomial C. albicans and C. glabrata candidemia isolates to 

possess more echinocandin resistance than community-acquired isolates, though C. albicans 
resistance rates were still very low in nosocomial cases [45]. Resistance also seems to be 

associated with younger age, as global surveillance found the highest rates of C. glabrata 
echinocandin resistance in patients ages 20–39 (16.7% to each echinocandin), followed by 

those ages 40–59 (7.0–4.2%, by drug), with little to no resistance in the older age groups 

[46]. In this study, there were only 5 C. glabrata isolates from patients 0–19 years old, 

among which there was no resistance, but another study of Paris-area hospitals found age 

less than 15 years to be an independent risk factor for candidemia with reduced 

echinocandin susceptibility [37].

Gastrointestinal (GI) disorders and recent GI surgery have both been significantly associated 

with infection with an isolate containing an FKS mutation. Each has also been associated 

with echinocandin treatment failure, the latter in univariate analysis only, and the former in 

multivariate analysis [34, 33]. FKS mutations have also been found more frequently in solid 

organ transplant patients with C. glabrata candidemia [25]. Additionally, a French study 

found that patients with hematological malignancy were significantly more likely to have 

recent exposure to caspofungin, suggesting that they might also be at elevated risk for 

developing echinocandin-resistant infections [37]. This conclusion is supported by the fact 
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that half of FKS mutants collected by the French National Reference Center for Mycoses 

and Antifungals were from patients with hematological malignancy [40]. It is important to 

note that there is very little data from broad surveillance studies on the medical conditions 

that predispose patients to developing echinocandin-resistant infections, so much of this data 

comes from research specific to single institutions or regions. Knowing how widely 

antifungal prescribing practices can vary, it is unknown whether these findings are 

generalizable to a larger patient population.

Given that C. glabrata demonstrates an intrinsically reduced susceptibility to fluconazole, in 

addition to an apparent predisposition for the development of echinocandin resistance, there 

is a growing concern that multidrug resistant C. glabrata will emerge as a considerable 

clinical problem. A study combining 2006–2010 SENTRY global surveillance and 2008–

2010 CDC Atlanta and Baltimore-based surveillance from found that 9.7% of C. glabrata 
isolates were resistant to fluconazole. Of these, 11.1% (accounting for 1.1% of all C. 
glabrata) were resistant to at least one echinocandin and all contained an FKS mutation [24]. 

When comparing this data to echinocandin resistance among fluconazole-resistant C. 
glabrata collected from 2001–2004, the authors saw a sharp increase, with resistance to each 

echinocandin rising from 0% in the first time period to 8.0–9.3% in the second time period. 

A study of C. glabrata candidemia isolates from four US cities found that 14.8% of 

fluconazole-resistant isolates were resistant to at least one echinocandin, accounting for 

1.5% of all isolates [12]. In a study of C. glabrata candidemia isolates from 2001–2010, 

14.1% of fluconazole-resistant isolates were resistant to at least one echinocandin (3.5% of 

all isolates), and 10.3% were resistant to all three (2.5% of all isolates) [25]. Interestingly, in 

this study, prior patient exposure to echinocandin therapy predicted not just echinocandin 

resistance, but also fluconazole resistance, most likely because echinocandin treatment was 

more frequently selected for patients who had already been exposed to fluconazole or whose 

infective agent was suspected to have reduced susceptibility to this drug. Multidrug resistant 

profiles have also been found in other species of Candida, but these incidents are far less 

frequent, as with the single echinocandin and fluconazole-resistant C. albicans found in 

Baltimore between 2008 and 2011, accounting for 0.26% of all C. albicans bloodstream 

isolates [35].

Conclusions

There are limited antifungal agents available to treat fungal infections. The development of 

resistance to echinocandins in Candida is a serious threat to our ability to manage these 

infections. Echinocandins are the empiric treatment of choice for candidemia, but it is 

essential that triazoles be used as soon as species or appropriate susceptibility of the 

infective agent can be determined. This step down therapy is one important step in 

appropriate stewardship of the echinocandins. Although MDR Candida infections are still 

relatively uncommon, the emergence of these infections demonstrates the need for action 

now to improve stewardship and to continue to monitor for the development of resistance, as 

well as to study acquisition and transmission of resistance. It is imperative that we focus on 

antifungal resistance now before losing the ability to use these important drugs.
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